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Canonical and grand canonical ensemble expectation values from quantum
Monte Carlo simulations

R. D. Sedgewick, D. J. Scalapino, and R. L. Sugar
Department of Physics, University of California, Santa Barbara, California 93106, USA

L. Capriotti
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

~Received 14 February 2003; published 30 July 2003!

We present a method for obtaining grand canonical expectation values as a continuous function of the
chemical potential in quantum Monte Carlo simulations. We show how canonical ensemble expectation values
can be extracted in such simulations. In order to obtain results for all particle sectors, a modest number of
grand canonical simulations must be performed, each at a different chemical potential. With the canonical
ensemble results in hand, grand canonical expectation values can be constructed for arbitrary dopings. Results
are presented from the application of this method to the two-dimensional Hubbard model.
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I. INTRODUCTION

The properties of strongly correlated electron syste
near the Mott insulating phase depend sensitively on
doping.1 Most simulations of these systems have been c
ried out within the grand canonical ensemble, where a c
venient formalism exists for the evaluation of finit
temperature Green’s functions and other physical quant
that can be expressed in terms of them.2 In this framework,
to explore the doping dependence, it is necessary to carry
simulations at various discrete values of the chemical po
tial $ma% and interpolate between them. In this paper
describe a method for optimally combining data from the
simulations to obtain results for a continuous range ofm. We
first evaluate canonical ensemble expectation values and
tition functions~up to an overall constant! from simulations
performed in the grand canonical ensemble. Using the
proach of Ferrenberg and Swendsen3 to combine results from
simulations performed with different values of the chemi
potential, we obtain canonical ensemble quantities for a w
range of fillings from a modest number of simulations. Fro
these we are able to construct grand canonical expecta
values, enabling us to study a variety of physical quanti
as a continuous function of the chemical potential.

In Sec. II we present our methodology, and in Sec. III
illustrate it with results for the two-dimensional Hubba
model.

II. METHODOLOGY

We begin by briefly summarizing the approach to t
simulation of strongly correlated many-electron systems
the grand canonical ensemble set out in Ref. 2. The ex
tation value of a physical observableO is

^O~m!&5
Tr@Oe2b(H2mN)#

Tr@e2b(H2mN)#
, ~1!

whereH is the Hamiltonian,b the inverse temperature,m the
chemical potential, andN the number operator for the elec
0163-1829/2003/68~4!/045120~5!/$20.00 68 0451
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trons. In order to perform a numerical simulation, one m
first evaluate the traces over the electron degrees of freed
This is possible if the Hamiltonian is quadratic in the ele
tron creation and annihilation operators or can be made
through a Hubbard-Stratonovich transformation. To this e
we introduce a small imaginary-time stepDt by writing b
5DtL. The partition function can then be written in th
form

Z~m!5Tr@e2b(H2mN)#5Tr@e2Dt(H2mN)#L. ~2!

For each time slice,51, . . . ,L, we introduce a set of
Hubbard-Stratonovich variablesx(,) such that

e2DtH5(
x(,)

v~x~, !!expS 2Dt (
i , j ,s

cis
† hi , j

s ~x~, !!cj sD .

~3!

Herecis
† andcis are the creation and annihilation operato

for electrons at lattice sitei with z component of spins,
hi , j

s (x(,)) is a single-particle Hamiltonian for an electro
propagating through the external fieldx(,), andv(x(,)) is
a positive-definite weight function.(x(,) indicates a sum
over discrete Hubbard-Stratonovich variables. Here and
succeeding formulas, the sums would be replaced by i
grals for continuous Hubbard-Stratonovich variables. Ty
cally, x, has a component for each spatial lattice site or lin

The traces in Eq.~1! can now be performed, yielding a
expression of the general form

^O~m!&5

(
x

r~x,m!O~x,m!

(
x8

r~x8,m!

. ~4!

Herex stands for the totality of Hubbard-Stratonovich va
ables on all time slices,

r~x,m!5D↑~x,m!D↓~x,m!)
,51

L

v~x~, !!, ~5!
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and the determinants for spin-up and -down electrons
given by

Ds~x,m!5Det@ I 1ebmAs~x!#, ~6!

whereI is the unit matrix and

As~x!5e2Dths
„x(L)…

•••e2Dths
„x(1)…. ~7!

The quantityO(x,m) in Eq. ~4! can generally be expresse
in terms of finite-temperature Green’s functions for a sin
electron propagating in the background field provided by
Hubbard-Stratonovich variablesx. For example,

Tr@ciscj s8
† e2b(H2mN)#

5D↑~x,m!D↓~x,m!ds,s8S 1

I 1ebmAs~x!
D

i , j

.

For models with particle-hole symmetry, such as the H
bard model at half-filling, the product of the electron det
minants is positive, and one can use importance samp
techniques to generate a sequence of Hubbard-Stratono
configurations with the probability distribution

P~x,m!5
r~x,m!

(
x8

r~x8,m!

. ~8!

The average value ofO(x,m) in these configurations is the
an estimator for̂ O(m)&. Details of an algorithm for effi-
ciently generating configurations are given in Ref. 2.

For systems which do not have particle-hole symme
such as the Hubbard model away from half-filling, the pro
uct of electron determinants will in general not be posit
definite. In such cases, one can generate Hubb
Stratonovich fields using the probability distribution

Puu~x,m!5
ur~x,m!u

(
x8

ur~x8,m!u
. ~9!

It is then necessary to move the sign ofr(x,m),

S~x,m!5
r~x,m!

ur~x,m!u
561, ~10!

into the measurements yielding

^O~m!&5(
x

P~x,m!O~x,m!

5

(
x

Puu~x,m!O~x,m!S~x,m!

(
x8

Puu~x8,m!S~x8,m!

. ~11!

The expectation value of the sign can be written
04512
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^S~m!&5(
x

Puu~x,m!S~x,m!5

(
x

r~x,m!

(
x8

ur~x8,m!u
5

Z~m!

Zuu~m!
.

~12!

Here Z(m) is the partition function of the physical syste
and Zuu(m) that of a fictitious one in which the sign of th
product of determinants,S(x,m), is ignored.

To obtain information about the canonical ensemble fr
grand canonical simulations, we note that as long as the e
tron number operator commutes with the Hamiltonian a
the Hubbard-Stratonovich variables are chosen so that
~3! holds, then the product of electron determinants has
expansion in the fugacity of the form

D↑~x,m!D↓~x,m!5(
N

ZN~x!ebmN. ~13!

Once we have gone to the computational expense of
forming a matrix decomposition ofAs(x), Eq.~7!, which we
must do each time we make a measurement,2 it is straight-
forward to evaluate the left-hand side of Eq.~13! for a num-
ber of different values ofm. Equation~13! then yields a set
of linear equations that can be solved for theZN(x). At mod-
erate to low temperatures, only a limited subset of theZN(x)
will make a significant contribution to the product of dete
minants, so the system of equations to be solved is con
erably smaller than the number of spatial lattice points. Si
the canonical partition function for the sector with electr
numberN is given by

(
x

Puu~x,m!ZN~x!

uD↑~x,m!D↓~x,m!u
5

ZN

Zuu~m!
[Z̃N~m!, ~14!

where

ZN5(
x

ZN~x!)
,51

L

v~x~, !!, ~15!

we can evaluateZ̃N using an ensemble of Hubbard
Stratonovich fields generated with the probability distrib
tion Puu(x,m).

If the operatorO is defined on a single imaginary-tim
slice or if it does not change the electron number from ti
slice to time slice, then we can also write

O~x,m!D↑~x,m!D↓~x,m!5(
N

ON~x!ebmN, ~16!

and we can obtain a set of linear equations for theON(x) by
evaluating the left-hand side of Eq.~16! for different values
of m. In this case,

(
x

Puu~x,m!ON~x!

uD↑~x,m!D↓~x,m!u
5

ON

Zuu~m!
[ÕN~m!. ~17!

Finally, the expectation value of the operatorO in the ca-
nonical ensemble sector with electron numberN is
0-2
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^O&N5
ÕN

Z̃N

5
ON

ZN
. ~18!

Also, once theZN andON are in hand,

^O&5

(
N

ONebmN

(
N

ZNebmN

~19!

gives the grand canonical expectation values as continu
functions ofm.

From simulations at a single value ofm one only expects
to be able to make accurate determinations of theZN andON
for N in the vicinity of ^N&. We must therefore perform a se
of simulations with chemical potentialsma , sufficiently
spaced to cover the range ofN relevant to the problem o
interest. As indicated in Eqs.~14! and~17!, the outputs of our
simulations are Z̃N(ma)5ZN /Zuu(ma) and ÕN(ma)
5ON /Zuu(ma), rather thanZN and ON . We can combine
results from simulations with different values of the chemi
potential by writing

ZN5(
a

caZ̃N~ma!Zuu~ma!, ~20!

ON5(
a

daÕN~ma!Zuu~ma!, ~21!

with

(
a

ca5(
a

da51. ~22!

Following Ferrenberg and Swendsen, we choose theca and
da to minimize the variance ofZN and ON subject to the
constraints of Eq.~22!. A short calculation yields

ca5
1/@Zuu~ma!sN

2 ~ma!#

(
g

1/@Zuu~mg!sN
2 ~mg!#

, ~23!

wheresN
2 (ma) is the variance ofZ̃N(ma), which we deter-

mine from the simulation. Of course, a corresponding re
holds for theda with sN

2 (ma) replaced by the variance of th

ÕN(ma).
The constantsZuu(ma) can be determined up to an overa

normalization by iteratively solving the equation

Z~ma!5Zuu~ma!^S~ma!&5(
N

ZNebmaN, ~24!

with the ZN given by Eqs.~20! and ~23!. The ^S(ma)& are
measured directly in the simulations.

It is also possible to obtainZuu(m), and thereforêS(m)&,
as a continuous function ofm. We simply note that
04512
us
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Zuu~m!5(
N

ZNuu~m!ebmN, ~25!

where

ZNuu~m!5(
x

ZN~x!S~x,m!)
,51

L

v~x~, !!. ~26!

Note that once theZN(x) are known for any configura
tion, we can determineS(x,m) for any value ofm from the
right-hand side of Eq.~13!. A simulation performed at the
chemical potentialma will, of course, only determine the
ratio ZNuu(m)/Zuu(ma). However, we can combine resul
from simulations performed at different values of the chem
cal potential just as for theZN .

III. NUMERICAL RESULTS

We illustrate the methodology outlined in the last secti
with results for the two-dimensional Hubbard model. T
Hamiltonian is

H52t (
^ i j &,s

~cis
† cj s1cj s

† cis!1U(
i

S ni↑2
1

2D S ni↓2
1

2D .

~27!

Herecis
† andcis are the creation and annihilation operato

for electrons withz component of spins at lattice sitei, and
nis5cis

† cis . The sum ^ i j & is over all pairs of nearest
neighbor lattice sites.t is the hopping parameter andU the
Coulomb coupling constant.

The Coulomb term is reduced to quadratic form in t
electron creation and annihilation operators using Hirsc
discrete Hubbard-Stratonovich transformation4

e2DtU(ni↑21/2)(ni↓21/2)

5
1

2
e2DtU/4 (

xi (,)561
e2Dtxi (,)l(ni↑2ni↓).

~28!

For m50, which corresponds to half-filling, particle-hol
symmetry implies thatD↑(x,0)D↓(x,0) is always positive,4

so S(x,0)51, and there is no sign problem. It is therefo
convenient to adopt the normalizationZuu(0)5Z(0)51 in
solving Eq.~24! for Zuu(ma). Thus, we are in fact able to us
Eqs. ~24! and ~25! to determine Z(m)/Z(0) and
Zuu(m)/Zuu(0), respectively.

All of the results we present here are on a 434 lattice
with t51 andU54. The number of time slices,L, is chosen
so thatDt51/8. Except where otherwise noted, simulatio
were performed atm521.5, m521.025, andm520.6 for
each temperature. Atb58 we performed additional runs a
both m520.9625 andm520.9, while at other tempera
tures eitherm520.9625 orm520.90 was used. For runs a
m520.6, 100 000 Monte Carlo sweeps with 10 000 warm
sweeps were performed. For all other runs, 400 000 Mo
Carlo sweeps with 10 000 warmup sweeps were perform
For all simulations, nonlocal moves, as suggested in Re
0-3
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were used to assure ergodicity. To invert Eqs.~13! and~16!,
the right-hand sides are measured at the set of chemica
tentials,

m~ i !5ma1 idm, ~29!

wherema is the chemical potential used in the simulatio
i 527, . . . ,0, . . . ,7 anddm50.02. After inversion and av
eraging over configurations, particle sectors wh
ZNebmaN/Z(ma),1024 are dropped to prevent the spread
roundoff error from the inversion. The jackknife method w
used for error analysis. It should be noted that, after analy
results at different values ofm are not statistically indepen
dent.

In Fig. 1 we plot the free energy difference

F~m!2F~0!52
1

b
ln$Z~m!/Z~0!% ~30!

as a function ofm for two values ofb. In Fig. 2 we plot the
density defined byn(m)5^N&/V. HereV is the number of
spatial lattice points and̂N& is calculated using the standa
thermodynamic identity,

FIG. 1. Free energy difference between half-filled system
system with chemical potentialm. Statistical errors are negligible
on this scale.

FIG. 2. Density of the system for several different values ofb.
As errors depend onm, error bars are shown at several points alo
the curves here and in subsequent figures. Also shown is the z
temperature result, calculated using exact diagonalization.
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^N&52
]F

]m
5

(
N

NZNebmN

(
N

ZNebmN

. ~31!

As the temperature is lowered, the transition between
half-filled state (n51.0) and the six-hole state (n50.625)
becomes sharper. In particular, at zero temperature the
sity decreases in a series of jumps, due to the discretene
the finite-size spectrum.

Within our framework it is also straightforward to com
pute the compressibility of the system,k5]n/]m, by differ-
entiation of Eq.~31!. Note that the differentiation can b
performed analytically. Figure 3 shows the compressibility
a function ofm for different values ofb. As the temperature
is lowered, the compressibility develops a peak arou
m521.0 that is likely to be the signature of the low
temperature divergence expected from the metal-insul
transition.6

As previously mentioned, within our numerical scheme
is possible to calculate observables that are not diagona
the particle number. Figure 4~a! shows the antiferromagneti
structure factor. This is given by

Szz~p,p!5
1

V (
i j

~21! i 1 jSi
zSj

z , ~32!

whereSi
z5 1

2 cia
† sab

z cib is the standard spin operator. The pl
of this quantity versusm clearly indicates that the antiferro
magnetic correlations present at half-filling are sharply s
pressed upon doping. A similar plot of the equal-timed-wave
pair field correlation function is shown in Fig. 4~b!. Here the
d-wave pair field correlation function is given by

rd5
1

V (
i j

D iD j
† , ~33!

whereD i
†5 1

2 (d(21)dci↑
† ci 1d↓

† creates two electrons in ad
state. Here,d sums over the four near-neighbor sites ofl and
(21)d gives the sign alternation characteristic of ad-wave
pairing amplitude. The enhancement ofrd towardm50.0 is

d

ro-

FIG. 3. Charge compressibility of the system, obtained by
analytical differentiation ofn.
0-4
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a finite-size effect due to a strong antiferromagnetic respo
in the nearest-neighbor terms in Eq.~33!.

Finally, we show the expectation value of the sign in F
5. Here the sign is calculated as a continuous function om
using Eqs.~25! and ~26!. Note that the sign is small in th
m521.0 region where the density is changing rapidly a
electron correlations are believed to be important. In t
region the variance of the sign decreases as the sign doe
the fractional error increases, becoming as large as 2%
b58 and 12% forb510. Naturally, the variance of physica
observables grows as the fractional error of the sign doe

FIG. 4. ~a! The antiferromagnetic structure factorSzz(p,p). ~b!
The d-wave pair field correlation function.
d

v.
Y.
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IV. CONCLUSION

In this paper we have presented a method for extrac
canonical ensemble results from grand canonical ensem
quantum Monte Carlo simulations. As canonical informati
is only extracted from sectors whose particle number is cl
to the average number of particles in the simulation, simu
tions must be performed at several different chemical pot
tials to obtain results for a range of particle number secto
These separate simulations can then be combined to obt
complete picture of the different canonical ensembles w
lower statistical fluctuations than any of the simulatio
taken individually. Once the canonical results are obtain
they can be combined to give grand canonical results a
continuous function of the chemical potential.

In this work we have presented results for the tw
dimensional Hubbard model on a 434 lattice with Coloumb
interactions of moderate strength, but the method is ap
cable to any quantum mechanical problem, simulated in
grand canonical ensemble, for which particle number
conserved.

ACKNOWLEDGMENTS

We would like to thank R.T. Scalettar and A. Sandvik f
insightful discussions and Federico Becca for help with
Lanczos calculations. This work was supported by the D
partment of Energy under Grant No. DOE85-45197.

FIG. 5. The expectation value of the sign. Calculated from ru
with 100 000 Monte Carlo sweeps atm521.5, m521.025, and
m520.6.
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