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Canonical and grand canonical ensemble expectation values from quantum
Monte Carlo simulations

R. D. Sedgewick, D. J. Scalapino, and R. L. Sugar
Department of Physics, University of California, Santa Barbara, California 93106, USA

L. Capriotti
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
(Received 14 February 2003; published 30 July 2003

We present a method for obtaining grand canonical expectation values as a continuous function of the
chemical potential in quantum Monte Carlo simulations. We show how canonical ensemble expectation values
can be extracted in such simulations. In order to obtain results for all particle sectors, a modest number of
grand canonical simulations must be performed, each at a different chemical potential. With the canonical
ensemble results in hand, grand canonical expectation values can be constructed for arbitrary dopings. Results
are presented from the application of this method to the two-dimensional Hubbard model.
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[. INTRODUCTION trons. In order to perform a numerical simulation, one must
first evaluate the traces over the electron degrees of freedom.
The properties of strongly correlated electron systemdhis is possible if the Hamiltonian is quadratic in the elec-
near the Mott insulating phase depend sensitively on théron creation and annihilation operators or can be made so
doping! Most simulations of these systems have been carthrough a Hubbard-Stratonovich transformation. To this end
ried out within the grand canonical ensemble, where a conwe introduce a small imaginary-time stépr by writing 8
venient formalism exists for the evaluation of finite- =A7L. The partition function can then be written in the
temperature Green’s functions and other physical quantitiebrm
that can be expressed in terms of thein. this framework,
to explore the doping dependence, it is necessary to carry out Z(pw)=Trle AH- 1N =Ti{ e 47H-kNL, 2
simulations at various discrete values of the chemical potene, a5ch time slicef = 1,...L, we introduce a set of
tial {,L_La} and interpolate between them_. In this paper weybbard-Stratonovich variableg¢) such that
describe a method for optimally combining data from these
simulations to obtain results for a continuous rangg otWe - .
first evaluate canonical ensemble expectation values and par-€ = = > w(X(f’))eXD( —ATD CipN7j(X(€))Cjo |-
tition functions(up to an overall constanfrom simulations X(e) e 3
performed in the grand canonical ensemble. Using the ap-
proach of Ferrenberg and Swendsmcombine results from HereciTU andc;,, are the creation and annihilation operators
simulations performed with different values of the chemicalfor electrons at lattice sité with z component of spino,
potential, we obtain canonical ensemble quantities for a widéy,(x(€)) is a single-particle Hamiltonian for an electron
range of fillings from a modest number of simulations. Frompropagating through the external fiet@¢), andw(x(€)) is
these we are able to construct grand canonical expectatia positive-definite weight functionZ,, indicates a sum
values, enabling us to study a variety of physical quantitiesver discrete Hubbard-Stratonovich variables. Here and in
as a continuous function of the chemical potential. succeeding formulas, the sums would be replaced by inte-
In Sec. Il we present our methodology, and in Sec. Ill wegrals for continuous Hubbard-Stratonovich variables. Typi-
illustrate it with results for the two-dimensional Hubbard cally, x, has a component for each spatial lattice site or link.
model. The traces in Eq(l) can now be performed, yielding an
expression of the general form

Il. METHODOLOGY
We begin by briefly summarizing the approach to the > p(x%,m)O(X,1)
simulation of strongly correlated many-electron systems in (O(p))= X _ (4)
the grand canonical ensemble set out in Ref. 2. The expec- S p(x' )
tation value of a physical observalleis v pLAH
T Oe AH-xN)] Here x stands for the totality of Hubbard-Stratonovich vari-
(O(m))= e AR (1)  ables on all time slices,
L
whereH is the Hamiltoniang the inverse temperaturg, the X ) =D.(x.)D (X X(€ 5
chemical potential, an8ll the number operator for the elec- p(Xp) =D ()D€ "u)eﬂl 0(X(€)), ®
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and the determinants for spin-up and -down electrons are
given by g p(X, @)

(S(1) =2 P(X, ) S(x,10) = A
D, (x, ) =Def | +ef*A (x)], 6 g IR e o Z(w
(X, ) { (x)] (6) X S e )|
. . . XI
wherel is the unit matrix and (12)
A, (x)=e AL . = ATh((1), (7)  HereZ(w) is the partition function of the physical system

. . andZ(u) that of a fictitious one in which the sign of the
The quantityO(x,u) in Eq. (4) can generally be expressed product of determinantsS(x, ), is ignored.

in terms of finite-temperature Green’s functions for a single’ 14 gptain information about the canonical ensemble from
electron propagating in the background field provided by theyrang canonical simulations, we note that as long as the elec-
Hubbard-Stratonovich variables For example, tron number operator commutes with the Hamiltonian and
the Hubbard-Stratonovich variables are chosen so that Eq.
(3) holds, then the product of electron determinants has an
expansion in the fugacity of the form

Tr[c;,,cl e AH-xN)]

jo!

1

=D (X,u)D (X, 1) 8, gr| ————
1 m)D (X, 1) 6, L+ A

" Dy(x,)D, (X, ) = 2 Zy(x) e, (13

For models with parti_cle—hole symmetry, such as the Hub e we have gone to the computational expense of per-
be}rd model at hqlf—fllllng, the product of the electron dete,r'forming a matrix decomposition @,,(x), Eq.(7), which we
minants is positive, and one can use importance sampling, <t 4o each time we make a measurenénts straight-
techniques to generate a sequence of Hubbard-Stratonovigharq to evaluate the left-hand side of Eg3) for a num-
configurations with the probability distribution ber of different values of.. Equation(13) then yields a set

of linear equations that can be solved for #)gx). At mod-

P(X, ) = p(X, 1) ®) erate to low temperatures, only a limited subset of2kéx)
i 3 L will make a significant contribution to the product of deter-
- p(X', ) minants, so the system of equations to be solved is consid-

X erably smaller than the number of spatial lattice points. Since

The average value @& (x, ) in these configurations is then the canonical partition function for the sector with electron
an estimator fo{O(u)). Details of an algorithm for effi- numberN is given by
ciently generating configurations are given in Ref. 2.

For systems which do not have particle-hole symmetry, Pi(x,w)Zn(x)  Zy ~% () (14)
such as the Hubbard model away from half-filling, the prod- < [D:(x,w)D (X, )| Zy(m) N o
; e o T )LD R (e
uct of electron determinants will in general not be positive
definite. In such cases, one can generate Hubbardvhere
Stratonovich fields using the probability distribution L
Zy=2 Zy) [ w(x(0)), (15
|p(X1/“L)| X =1
P )= —————. (9) 3
2 [p(x",w)| we can evaluateZy using an ensemble of Hubbard-
x' Stratonovich fields generated with the probability distribu-
It is then necessary to move the signggi, u), tion Pj(x, ).
y anpdb, 1) If the operatorO is defined on a single imaginary-time
p(X, 1) slice or if it does not change the electron number from time
S(X,u)=7———7==*1, (10 slice to time slice, then we can also write
lp(x, )]
into the measurements yielding O(X,M)DT(X,M)Dl(X,MF% Oy(x)efeN (16)
(O(,u)>=2 P(x,u)O(X, 1) and we can obtain a set of linear equations for@hgx) by
X evaluating the left-hand side of E(L6) for different values
of u. In this case,
2 Pyj%,2)O(%, ) S(x,42) B (O .
— Xalu’ N X N ~
_ (12) 5 I 5 =5—~=0nu). (17
> Py(X\)S(X' 1) 2 10,0, mD, 6w Zy()
d Finally, the expectation value of the operatorin the ca-
The expectation value of the sign can be written nonical ensemble sector with electron numbleis
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6N On _ BuN

(On=3"= 7" (19) Z(w)= 25 Zn(w)e N, (25
Also, once theZy and Oy are in hand, where
L
Z = Zn(X) S(X, X(€)). 26

S opeet ni() =2 ZyooSixm [T ox(0). (26)
(O)= —— (19 .

2 7. eBuN Note that once th&y(x) are known for any configura-

v N tion, we can determin&(x,u«) for any value ofu from the

. _ _ ~right-hand side of Eq(13). A simulation performed at the
gives the grand canonical expectation values as continuouygemical potential, will, of course, only determine the
functions of . ratio Zy(#)/Z)(r,). However, we can combine results

From simulations at a single value pfone only expects  from simulations performed at different values of the chemi-
to be able to make accurate determinations ofzge@andOy cal potential just as for th&, .

for N in the vicinity of (N). We must therefore perform a set

of simulations with chemical potentialg,, sufficiently IIl. NUMERICAL RESULTS
spaced to cover the range Nfrelevant to the problem of
interest. As indicated in Eq§14) and(17), the outputs of our We illustrate the methodology outlined in the last section

simulations  are “ZN(MQ)ZZN/ZH(MQ) and Op(w,)  With results for the two-dimensional Hubbard model. The
=ON/Z)(u,), rather thanZy and Oy. We can combine Hamiltonian is
results from simulations with different values of the chemical

. " 1 1
potential by writing H=—t z}: (C;rnggﬂLC}LUCia)JFUE (n”— E) ( ni — E)'
(i [

(27)
:

Herec;, andc;, are the creation and annihilation operators
for electrons withz component of spirr at lattice site, and
21) niq=cfgcig. _The.sum.<ij> is over all pairs of nearest-
neighbor lattice sitest is the hopping parameter ardl the
Coulomb coupling constant.
with The Coulomb term is reduced to quadratic form in the
electron creation and annihilation operators using Hirsch’s

Se,=Sd,-=1 22) discrete Hubbard-Stratonovich transformation

Zn=2 CoZn( 1) Z)|(1a), (20)

oN=§ duOn(1) Z)|( 14,

e~ ATU(ni; —12)(nj| ~1/2)

Following Ferrenberg and Swendsen, we choosecthand

d, to minimize the variance oZy and Oy subject to the —An(ONMy=ny))

=-e e
constraints of Eq(22). A short calculation yields 2 x(0)=+1
(28)
UZ)(po)of(1a)] _ . ,
a= ) (23 For u=0, which corresponds to half-filling, particle-hole
2 1/[Z||(,uy)a§,(,u7)] symmetry implies thaD(x,0)D (x,0) is always positivé,
Y so0 S(x,0)=1, and there is no sign problem. It is therefore

2 . . ~ . convenient to adopt the normalizatid(0)=2(0)=1 in
whereay(u,) is the variance oZy(u,), which we deter-  gqing Eq.(24) for Z|(ra)- Thus, we are in fact able to use
mine from the simulation. Of course, a corresponding resuIEqS_ (24) and (25 to determine Z(x)/Z(0) and
holds for thed,, with o%(x,) replaced by the variance of the Z(1)/Z)(0), respectively.

(~)N(,ua). All of the results we present here are on x4 lattice
The constant&(u,) can be determined up to an overall with t=1 andU=4. The number of time slice, is chosen
normalization by iteratively solving the equation so thatA 7= 1/8. Except where otherwise noted, simulations

were performed ayu=-1.5, u=—1.025, andu=—0.6 for
_ _ Bu,N each temperature. A8=8 we performed additional runs at
Z(1a)=Z)|(La)(S(1a)) % ZANC @4 poth w=—0.9625 andu=—0.9, while at other tempera-
tures eithequ= —0.9625 oru= —0.90 was used. For runs at
with the Zy given by Egs.(20) and (23). The(S(u,)) are  u=—0.6, 100000 Monte Carlo sweeps with 10 000 warmup

measured directly in the simulations. sweeps were performed. For all other runs, 400 000 Monte
Itis also possible to obtaid (), and thereforéS(uw)), Carlo sweeps with 10 000 warmup sweeps were performed.
as a continuous function gf. We simply note that For all simulations, nonlocal moves, as suggested in Ref. 5,
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) ) FIG. 3. Charge compressibility of the system, obtained by the
FIG. 1. Free energy difference between half-filled system andanalytical differentiation of.

system with chemical potential. Statistical errors are negligible

on this scale.
. . > Nzyef#N
were used to assure ergodicity. To invert E4S8) and(16), JF
the right-hand sides are measured at the set of chemical po- (N)=— @Z - (32)
tentials, % z, PN

p(i)=patidu, (29) : iy
As the temperature is lowered, the transition between the

where u,, is the chemical potential used in the simulation, half-filled state =1.0) and the six-hole staten& 0.625)
i==7,...,0,...,7 andbu=0.02. After inversion and av- becomes sharper. In particular, at zero temperature the den-
eraging over configurations, particle sectors wheresity decreases in a series of jumps, due to the discreteness of
ZyePraNiZ(,)<10"* are dropped to prevent the spread of the finite-size spectrum.
roundoff error from the inversion. The jackknife method was  Within our framework it is also straightforward to com-
used for error analysis. It should be noted that, after analysigute the compressibility of the systeri=dn/du, by differ-
results at different values gf are not statistically indepen- entiation of Eq.(31). Note that the differentiation can be

dent. performed analytically. Figure 3 shows the compressibility as
In Fig. 1 we plot the free energy difference a function ofu for different values of3. As the temperature

1 is lowered, the compressibility develops a peak around
E(uw)—E(0)= — —InfZ(u)/Z(0 30 u=-—1.0 that.is likely to be the signature of thg low-

(w)=F(0) B {2(wyiz(0}} 30 temperature divergence expected from the metal-insulator

transition®

As previously mentioned, within our numerical scheme it
is possible to calculate observables that are not diagonal in
the particle number. Figurg@ shows the antiferromagnetic
structure factor. This is given by

as a function ofu for two values off3. In Fig. 2 we plot the
density defined byn(x)=(N)/V. HereV is the number of
spatial lattice points an¢lN) is calculated using the standard
thermodynamic identity,

1

095 | S, m) = % > (-yitigs, (32)
0.9t
085 | whereS/= %cfraoiﬁciﬁ is the standard spin operator. The plot
of this quantity versug. clearly indicates that the antiferro-
= 08 magnetic correlations present at half-filling are sharply sup-
075 | pressed upon doping. A similar plot of the equal-tidheave
07 | pair field correlation function is shown in Fig(l). Here the
’ E’: d-wave pair field correlation function is given by
065 B=
0.6 - : Be = o 1 t
46 14 12 08 06 -04 Pa=y Zj) AiAy, (33

u

FIG. 2. Density of the system for several different valuesgof where Al =33 5(— l)(sCiTTCiTJr s, Creates two electrons in
As errors depend op, error bars are shown at several points alongstate. Hereg sums over the four near-neighbor sited ahd
the curves here and in subsequent figures. Also shown is the zerg—1)° gives the sign alternation characteristic oflavave
temperature result, calculated using exact diagonalization. pairing amplitude. The enhancementmgftoward u=0.0 is
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(b) FIG. 5. The expectation value of the sign. Calculated from runs
0.75 . : : : . with 100 000 Monte Carlo sweeps at=—1.5, u=—1.025, and
E:S;B , - u=—0.6.
07T~ 1 IV. CONCLUSION
0.65 - In this paper we have presented a method for extracting
o canonical ensemble results from grand canonical ensemble
06 L quantum Monte Carlo simulations. As canonical information
is only extracted from sectors whose particle number is close
055 | to the average number of particles in the simulation, simula-
tions must be performed at several different chemical poten-
05 tials to obtain results for a range of particle number sectors.
18 These separate simulations can then be combined to obtain a

0 complete picture of the different canonical ensembles with
lower statistical fluctuations than any of the simulations
FIG. 4. (8 The antiferromagnetic structure fact®t(=,m). (b)  taken individually. Once the canonical results are obtained,
The d-wave pair field correlation function. they can be combined to give grand canonical results as a
continuous function of the chemical potential.
a finite-size effect due to a strong antiferromagnetic responsg. In th's v;/orkb\éve dhav% pl)resentetld r_esults_; hfor lthe tl;/vo—
in the nearest-neighbor terms in HG3). dimensiona Hubbard model on a4 lattice with Co oumb
: . .. _. interactions of moderate strength, but the method is appli-
Finally, we show the expectation value of the sign in Fig. .apje 16 any quantum mechanical problem, simulated in the
5. Here the sign is calculated as a continuous functiop of grang canonical ensemble, for which particle number is
using Eqgs.(25) and (26). Note that the sign is small in the ¢onserved.
pn=—1.0 region where the density is changing rapidly and
electron correlations are believed to be important. In this ACKNOWLEDGMENTS
region the variance of the sign decreases as the sign does, but\yie would like to thank R.T. Scalettar and A. Sandvik for
the fractional error increases, becoming as large as 2% fqpsightful discussions and Federico Becca for help with the
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observables grows as the fractional error of the sign does. partment of Energy under Grant No. DOE85-45197.
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